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A Rescaling Algorithm for the Numerical Calculation

oof Blowing-up Solutions

0MARSHA BERGER AND ROBERT V. KOHN
c'Courant Instiute

1. Introduction

i We present a numerical study of the blow-up of u, = u, + u1'. This i s one of
a large class of nonlinear evolution equations with scale-invariant structure and
blowing-up solutions. Other examples include reaction diffusion equations such
as u,- Au = uP or u, - Au = eu, which arise in models of combustion
(e.g. [211 , [22]). and the nonlinear Schr6dinger equation iu, - Au = Jul" 'u.< which arises in plasma physics and nonlinear optics (e.g. [24]. 1251). lhe hlowing-

up solutions of such equations have in common the properties that (i) the
singularities are isolated, and (ii) the singularities have a characteristic structure.
which may or may not be directly linked to the scaling properties of the equation.
For solutions that do develop singularities it is often of interest to stud-, the local
features of the blow-up. Such a study may be useful not onlh for direct
comparison to the phenomenon being modelled, but also for extending the
solution beyond the singular time, or for matching it to the solution of a different
equation which applies near the singularity.

Several authors have attempted to calculate the local character of the blo" -up
of u, = u_ + uP numerically (e.g. [6]. [13], [20]). This is a sensitive problem.
since most methods for solving evolution equations lose accurac\ as the solution
becomes large. Two novel approaches have recentlI been introduced, in some-
what different contexts: Chorin used an algorithm based on rescaling and mesh
refinement to study the three-dimensional Euler and Navier-Stokes equations in
[7]; and a method based on continuous-in-time rescaling has been applied h
LeMesurier. McLaughlin, Papanicolaou, P.-L. Sulem. and C. Sulen ito stud, the
nonlinear Schr6dinger equation in [24]. [251.

Our approach differs from those just cited in the following wa\. Upon
rescaling to resolve the appearing singularity. (horin's method concentrates on
an increasingly small physical domain, enforcing periodic boundarN conditions
closer and closer (in unscaled distance) to the singularity. The method of
LeMesurier et al. uses a fixed mesh in physical space which is spread apart b\
rescaling, so that accuracy is inevitably lost far from the singularity. In contrast.
using our mesh refinement strategy we are able to compute accuratel\ over the
entire physical interval even as the solution grows in magnitude from 0( 1) to
0(1012). The main idea is this: we step the solution forward until its maximilur
value reaches a preset threshold. Where the resulting function is large the
solution is resealed to make it small again. Since scaling stretches !he spatial
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842 M. BERGER AND R. V. KOHN

variable, extra grid points are added to maintain accuracy. The rescaled solution
is then stepped forward until its maximum value reaches the threshold value, at
which juncture a further rescaling takes place, etc. In effect, our procedure solves
the equation with a varying mesh width and time step that are linked, at each
point in space-time, to the magnitude of the solution. Though very similar to
Chorin's method in spirit, ours has the advantage that the boundary conditions
for the rescaled problems are handled in a manner that is consistent with the
underlying evolution equation. Our approach to mesh retinement and multiple
grids is similar to one which has been used for solving first-order hyperbolic
systems in one or more space dimensions: see e.g. [4]. In fact. we implemented
the algorithm by modifying a code originally developed to solve hyperbolic
systems in one space dimension.

Though the method is obviously more general. we have applied it only to the
semilinear heat equation

(1.1)U u, 14u, - Ut'  p > 1

on the interval - 1 < x < 1. with a Dirichlet boundarv condition u( - 1. 1)

u(l. t) = 0. Attention is further restricted to initial data ( x) such that

(1.2) >0. (x) = ( .. x < 0 for x * 0.

for which the solution of (1.1) is positive. symmetric, and radially decreasing. A
lot is known about how solutions of this equation blow up: see e.g. [1]. [2]. [5].
[10]-[19], [23], [261. In particular, one knows that

(1.3) lim(T- t)"/ _)u( -T- t.) = (p - 1 ,I ,
TTT

uniformly for 1, < C, where T is the blow-up time: see [14]. [16]. This gives the
behavior in any space-time parabola JxJ 2 < C(T - t) based at the blow-up point.
It is natural to ask what happens beyond these parabolas. For example. what is
the asymptotic shape of the curve where (T - )I

' (P 'lu is constant'
In [13], [141, Galaktionov and Posashkov use a formal argument adapted from

[201 to derive the ansatz

(1.4) u(x, t) (T - t) t p -l)+ (p 1x (F- -
4 p (T- t)I og (T - t)

This is consistent with (1.3), since the second term in the bracket tends to zero as
t - T with , = xi iT-- t fixed. It suggests that the curves (T - t) )1 (1u = -y
are asymptotically of the form x 2 = c(y)(T - t)[log( T - t). (An analogous



A RESCALING ALGORITHM 843

conjecture concerning the blow-up of u, - u, = eu is presented in [9].) Some
preliminary analytical results tending to confirm (1.4) are given in [10] and [14].
but they fall far short of a full proof. Our numerical calculations give ,ufficient
detail of the behavior near blow-up to allow us to test (1.4). The calculated
solution is in fact in excellent agreement with the formula, leaving little doubt in
our minds about the validity of this conjecture.

2. The Algorithm

The basis of our algorithm is the following scale invariance of the equation
(1.1): if u(x. t) solves it, then so does

(2.1) u,(V, r) = y 2,,ip - u ,Yv, T r)

for any y > 0. By choosing y to be small when u is large. one can keep the
rescaled solution u, bounded. Thus it is easier to solve for u.r than it is to
compute u directly. Note however that both space and time are stretched by the
scaling: if u is defined for -1 < x < I and 0 < t < T. then the domain of u1 is
_y <y < y. 0 < r < -2T. This is the price one pays for the advantages of

rescaling. Computationally, if u is defined on a grid of mesh width Ax. then (2.1)
defines ur only on a grid of mesh width -y- 1Ax. A loss of accuracy is avoided by
introducing additional points to the grid on which u'Y is defined. Our algorithm
maintains both the original u and the rescaled u.,. each defined on a separate
grid, and steps each forward in a time-accurate way. Since the scaling (2.1)
stretches time as well as space, most of the computational effort goes into the
advancing of t%. Actually, our algorithm has an iterative structure, so that at the
k-th iteration we are maintaining not just one rescaled solution but k of them.
corresponding to -y -, A2... AX where X is a fixed scaling parameter. To
avoid unnecessary computation we rescale only where u is large. in such a wa\
that the finest rescaled solution (u v with y = X" in the k iteration) stays bounded
away from 0 as well as oc.

To determine the algorithm one must fix three parameters:

X = scale factor.

(2.2) M = maximum height before rescaling.

a = parameter controlling width of the interval to be rescaled
(which is where aM <_ u < M).

They should be chosen so that

(2.3) X -' > I is a ,mall integer, and0 < a < 1.

Typical choices are X = 4, M 2v. '. The algorithm computes succes-
-.noility Codes

or Ic )Avail and/or

I ) /t t Special
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sively a sequence of functions uA(_vA. To), where

UA = k-th rescaled solution.

(2.4) Vk = k-th rescaled spatial variable.

T = clock measuring (rescaled) time for uA.

rhe time (according to the clock T,) at which u4 is rescaled to yield u, will be

denoted by T*. and the interval which is rescaled will be (v . v )- All these
quantities will be defined more precisely below. The initial index k = l) corre-

sponds to the "real" solution u as a function of "real" space x and "real" time t:

(2.5) U,= u, . ') = X. t.

The initial phase of the algorithm simply integrates the equation (1.1) until
the maximum amplitude reaches M. (We assume that the initial data satisf',

< M, and that the corresponding solution u does indeed blow up. This is true.
for example. if 0 = c(1 + cos(rrx)) with c sufficientlv large. and N1 > 2c.) We

use the forward Euler finite difference scheme

ut . ) ( ) . ,= ,)

(2.6) + ,It, -,)- 2u(0 x , t,,)-u ( , , A + '.u 'P ,. t,).

which is first-order accurate in time and second-order in space. Typical choices
are Ax = .005 and At = !4(A. -. In this initial phase of the algorithm the
Dirichlet condition u = 0 is used at the endpoints x = ± I. The solution is
integrated until the first time step when flu(*. t,,)jI% > M. Then it is linearly
interpolated in time. using two time levels, to obtain a time r,* with t, - At S
To* < t,, such that

(2.7) Iu(. To*) t1 = M.

The interval to be rescaled at the next stage. (V) ,' ). is essentially the set where

u(. i)) >= aM. It is convenient however to let v0' he grid points, so they are
defined by

u( I, - Ax, o* ) < aM < u( . ,*).

(2.8)
u( -,,.*' ) >, a M > u(y + A. . ,)*)

Of course, perfect arithmetic would yield v, = -v, We do not enforce 1;:s
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Figure 1. The graph of u, ju\ prior to rescaling.

condition, so that symmetry may he used as an indicator of the accuracy of the
computation. Figure I depicts the graph of u at the end of this initial phase. just
prior to rescaling.

The first "rescaled solution" ul is related to u by

(2.9) 141(.1 1. 1 T, X2, ( "' I( A I'.m ±,*4-NT

We want u to he evaluated on the right of (2.9) onk- wvhere u ! aAI: therefore v,
is restricted to the interval

(2.10) Xt y" <X A

The maximum value of ul at its initial time T, 0 (corresponding to t T,)* ) is1
reduced from M = Iu(., T)*)Il to

'11,(. .0) 11 = X2, p I) < M:

this is the purpose of rescaling. Due to the scale invariance property (2.1). u,
solves the same equation as u, with respect to its (rescaled) "space" and "time"
variables yj = xXA Tj -,*)V

(2.11) aT 1 Dt.2 11 = 141".
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This is what lies at the foundation of our algorithm: the difference scheme (2.6)
originally introduced for stepping u = u, forward in time can also be used to
solve for u, (and, eventually, for each successive u, ).

The computation of ul requires initial data u( .. 0) and boundary data
u,(X IY', rl). The former are obtained by rescaling u:

(2.12a) u1(V.0) = ,2/ p I u(Xyi, .T*).

The latter are obtained using the coarse mesh approximation method (see [81):
the boundary condition for the refined problem is determined by the solution
previously computed in the same region using the coarser mesh. Specifically. the
right side of equation

(2.12b) u,( X 'y . NAT-) = X2/-( y, U ,* + X -NAr)

is obtained by applying the forward Euler difference scheme to u with a time step
X

2 A ,r (which is smaller than the full time step AT, = At used to advance u on the
coarse mesh), but only at the points _,' (which were chosen to be grid points).
For first-order difference approximations in time, this is equivalent to linear
interpolation in time between u(y0f. t,) and u(vj', t,, + At). Since the mesh
ratio AT',/(Ay1 )2 is stable (see below), we expect a boundary condition obtained
via the coarse mesh approximation using a smaller time step to be stable as well.
Such a result has been proved in other contexts, e.g. [3].

As has already been indicated, the "rescaled solution" uI is computed using
the forward Euler scheme in the variables Vp Tp. To preserve the numerical
scheme and to maintain accuracy. it is important to use the same discretization
for u, as for u, i.e., to set AyI = Ax and AT, = At. This requires introducing
new grid points: those used for u, spaced Ax apart. determine u,( .. 0) only on a
mesh of width A Ax. To achieve Av = Ax. X - I new points must be
introduced between each pair of existing ones. (If for example X = '. then 3 new
points are added to each interval to refine the mesh from 4Ax to Ax. The
condition that A be a smaller integer is imposed to make this step easy to
implement.) Linear interpolation in space is used to assign a value to u,( . 0) at
the new grid points. Notice that the effect of this procedure in the original
variable x is to refine the mesh by a factor of X

The structure of our algorithm should now be clear: after rescaling. the
"original" solution u and the "rescaled" solution u, are stepped forward inde-
pendently, each on its own grid. A single time step of u corresponds to A ' time
steps of ul. The two solutions interact primarily in that u is used to determine
the boundary conditions for u. In addition, at each successive time step for u
the coarse grid solution is modified on the interval that was rescaled. to make it
agree with the more accurate fine grid solution u,. When 1( o, ,V )I;,l first
exceeds M. a smaller time step (equivalently. linear interpolation in time) is used
to find a value -r*. with (N - )ATI =_ TI* < NAT, such that

U,, T = M.
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On the interval where u, > aM the solution is rescaled further, yielding u,, and
so forth.

The (k + 1)-st rescaled solution u, , is introduced when T,, the "clock" for
uk , reaches a value T- such that

(2.13) Iuk(. T )jII = M.

The interval in Vk-space to be rescaled, (v , y+ ), consists precisely of the grid
points where uk(-, Tk) > aM:

Uk(.Vk - AA, Tk* ) < aM < ui(Y' , TV*)

(2.14)
U k(-YkIT aM > U (yA + AY4,TA).

The next rescaled solution u, is related to u, by

(2.15) Uk (,kI ( rk ) -X 2 
(P 11flu(X_, . I, T* + X2T .

its "rescaled space" and "rescaled time" variables Y, -A and T, . range over

(2.16) x 'yA < y I X 1ly . TA - I 0.

Its initial data u, + 1(VY, .0) are determined by rescaling u,(.. T-* ). using linear
interpolation to define it on a refined spatial grid of mesh width Ay, . , = Ax. Its
boundary data Uk I(X 

1Y. , NA-A ,) are determined from u, using the coarse
mesh approximation, and it is stepped forward in time by the forward Euler
difference scheme with AT, - = At. Previously rescaled solutions are stepped
forward independently: if for example X = ,, then u, is stepped forward once
every 16 time steps of u, + I uA , once every 256 time steps of uk . . etc.
Whenever a fine grid solution is computed at a point in space-time where a
coarser mesh solution is also defined, the value of the coarse mesh solution is
updated to agree with the fine grid calculation. When a time step is reached such
that IIuk (,. NATi)II, > M, then it is time for another rescaling. A smaller time
step is used to find rA,1 such that Iu, ('. Tk* )lIj = M. and the entire
procedure is repeated.

This algorithm cannot be continued indefinitelv without losing accuracy. We
use the symmetry of the computed solution as an indicator of the accuracy of the
calculation. With symmetric initial data and perfect arithmetic. it, would remain
symmetric for every k. However, the roundoff error is not symmetric. In a typical
calculation using X = ', the amplitude of the asymmetry approximately doubles
from one rescaling to the next. On a Cray XMP using double precision arith-
metic, machine epsilon is about 10 26 and by the 87-th iteration only two or
three digits of symmetry remain. Generally we stop the calculation after 80
iterations; with p = 5 and X = ', the corresponding amplitude of u is on the
order of (X 2/(P '))g = 1012. The use of multiple grids. rescaling and relining
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only where the solution is large, is crucial to the success of this calculation: to
achieve similar results without mesh refinement on a single. uniform grid would
require 1026 mesh points! Similar accuracy could be achieved using a single
nonuniform grid (c.f. [24], [25]) but our method has the advantage of choosing
the proper distribution of grid points automatically.

Certain qualitative features of the solution are strikingly clear from even a
casual examination of the output of our algorithm:

(2.17a) The "rescaling times" r,* are eventually almost independent of k
(Figure 2).

(2.17b) If A ( . rT* ) is graphed over z, fixed interval, say - 1 < : < I. then the

graph is eventually independent of k (Figures 3.4).

(2.17c) The width of the interval rescaled at the k-th iteration behaves as the
square root of a linear function ( Figure 5).

All these assertions are explained in Section 4. It turns out that (2.17a) is a
consequence of the (proved) result (1.3). while (2.17bc) are related to the
conjectured asymptotics (1.4).

3. Review of the TheorN

Before interpreting the algorithm, we review some of the results and conjec-
tures concerning the blow-up of u. Our discussion is restricted for simplicity to
the case at hand: positive, symmetric, radially decreasing solutions of (1.1) on an
interval with a Dirichlet boundary condition. It should be noted, however, that
parts of the theory have been carried out in much greater generality. including
space dimensions n > I and non-radial solutions.

Let T be the blow-up time of u, in other words,

Ilu(., t) l u(, t) - c as I F.

It is convenient to introduce "similarity variables", a change of both dependent
and independent variables defined by

w(C. s) ( T- t

(3.1) =M /C- I,

s =-log( T- t).
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One computes that u solves (1.1) if and only if

1 1
(3.2) w - wj + Ie + I w - wP = 0.

Since s - oo as t T T, the change of variables (3.2) converts any question about

the blow-up of u into one about the large time asymptotics of w.

Upper and lower bounds are known for the blow-up rate of u (see [I 11) they

imply that

(3.3) 0 < C , w(-s)11 = w(0. s) C' <

for some positive C, C', independent of s. Rewriting the equation (3.2) as

W,- a(Pw)c + I- W w-

with p( ) = exp{ - 1 2}, it is easy to see that

E[w] - + 2 (p - 1) p + I 1K.'p( )d

decreases as s increases, and indeed that

d w

It is thus natural to expect that, as s -- ec, w( , s) should tend to a stationary

point w( ) of the functional E. It turns out that the only stationary points of E

are the "trivial" ones w, = 0 and w., _±(p - 1) 1 /'P". Since the nonposi-

tive stationary points are ruled out by (3.3). we are led (heuristically) to the con-

clusion that, as s -- no, w(E, s) should tend to the constant function "y( )

(p - 1) i/(P -". These ideas can be made rigorous, and they lead te

THEOREM 3.1 [14], [16]. As s - oc. w(I. s)- (p- I)- / P " . uniformyv

on the set J j < C for any C > 0.

Transformed into the original variables via (3.1) this is equivalent to (1.3).

Now consider the profile of w as a function of for fixed s >> 1. Evidently it

is nearly flat, w = (p - I)-/P I), on an interval about the origin which grows

with s; but it decays to 0 at the endpoints + e' / , corresponding to x = + 1.

The form of this profile can be guessed by supposing that w( . s) - f( /g(s))

for some functions f(n) and g(s); cf. [14], [201. To obtain the expected qualita-

tive behavior we suppose that

(3.4a) g(s)Too as s- oo,

and

(3.4b) f(0) =(p -1) '/(P f f(n) -- 0 as In- -* :



850 M. BERGER AND R. V. KOHN

moreover, for reasons that will emerge shortly, we also want to assume that

(3.4c) g'(s)/g(s) - 0 as s - oc.

i.e., that g has subexponential growth. Substitution of the ansatz into the
equation yields

(3-5) '(s)f() - 1 ,1 )

g(s) -g + + - I -0.

As s - oo, the first two terms tend to 0 by virtue of (3.4a.c). leading to this
first-order equation for f:

1 ,1

(3.6) 1f '(f ) + -=---i W - fP(n) 0.

The general solution is

(3.7) f(ni) = ((p -1) + crl2) '"(P

in which c > 0 is an arbitrary constant of integration. Notice that f satisfies
(3.4b) regardless of the choice of c. Absorbing the constant of integration into the
(unknown) g leads to

CONJECTURE 3.2. W(. s) - ((p - 1) + 42/g 2(s)) I(JP ) for some g(s)
such that g - oo and g'/g -- 0 as s - oc.

This is consistent with Theorem 3.1 since 2/g(V12 - 0 as s -- x with
4]1 < C. As will be explained in Section 4, it is borne out by our calculations, and
indeed is responsible for the observed stability of the profile of Uk. (2.17b). In
terms of the original variables, this conjecture says that

1pij 1) \x - I

(3.8) u(x ,t) - (T - t p - l)+ (2( o TI

So far we have guessed the profile f, but not the spreading rate g. A formal
procedure for determining g is worked out in 113), 114], following a method
introduced in [20]. The idca is to look for a formal expansion in powers of s

(3.9) w(4, s) -f(4/g(s)) + 1f,/g(s)) +
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and to suppose that the first two ternis of (3.9) interact by setting

(3.10) g(s) = c(,

(The expansion (3.9) would appear to be consistent with other choices. for
example g(s) = CoS, but for such g it becomes impossible to satisfy the con-
sistency condition (3.16) below.) The value of the constant c(0 is determined h\ a
consistency condition for the existence of fL. as we now explain. Substitution of
the ansatz (3.9) into the equation (3.2) gives a sequence of equations of orders
sO. s I, s 2 etc. The first says that f0 satisfies (3.6): we may choose the constant

of integration to be I in (3.7), since c0 is as yet undetermined in (3.10):

(3.11) f"(,Q) = (( p - 1) + ,7) p ).

The order s I equation says that

1 1 1
(3.12) - -2 'If), - ,, 2f,, + ;Tifi' + P/if 1f. = 0.

Using (3.11), this takes the form

(3.13) f + a(q)f -- 0()

with

2[1 1 p l l(r t,,+ 2 i),

(3.14) a(Ti) =2 _ P - - 1) 2, rF "
77 In- (P - + 77'

We can write (3.13) as

e'(efl)' 00m).
TI

where A is any indefinite integral of a. One computes that

e 4 = "Ti -:"

hence the general solution of (3.12) is

(3.15) fi(i) =fopt 2 L + ft V? )'t)fl(t)dr

with cl c IR a new constant of integration. The rule proposed in [20] for choosing

C( is to require that

(3.16) f, should be analytic at qi = 0.
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In other words, the coefficient of t2 in the Taylor expansion

(3.17) f. P(t)(t) = a, + ait + a', ±

should vanish, so that the corresponding term ]J01Ilog(,q) is absent from (3.15).
The logic behind this requirement is that such a logarithmic term would he
differentiated in the process of finding /_, f.. . and would eventually lead to a
term that is infinite at 71 = 0. Calculation gives that

4 p(3.18) a, = 0 in (3.17) 4 cO =

The first term in the expansion (3.9) is now entirely determined. Since our
numerical results are insufficient to resolve the next term. there is no need to
evaluate the integral (3.15) for f. However, we shall make use of its \alie a1
iq = 0. From (3.15) and (3.17).

.f,(O) =- .f,'(0 ,, a --'.I(0).

"here /3 is given by (3.14). Calculation gives

5 = -, (o) 2P(p (0 (0

We are thus led to this refinement of Con.ecture 3.2:

('ONJU "UR 3.3 [131. [14).mptotcallv a o-, x

(3.19a) w( .s) (p - 1) .p i 1 P s +

Moreo'er. at 0 the order s corre(tion to (3.19a) vs gi'en li-

(3.19b) w(0.) = (p- 1 '11 + - 'S + 0 (s

Rewritten in terms of the original variables u(x. . the first assertion is
precisely (1.4).

The preceding calculation is purely formal: we know of no proof that the
expansion (3.9) can be continued to all orders, or that it correctly represents the
behavior of w. However, there is some theoretical support for (3.10): it is knowvn
(see [10]) that w( . s) - 0 as s - oc with I I/(.s 2) oc. This implies that if
Conjecture 3.2 is valid for some function g(s), then g < cy 2. (A similar result is
proved for a slightly different boundary value problem in [141.) As we shall
explain presently. the spreading rate g(s) is linked to the width of the interval
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rescaled at each stage of our algorithm: moreover, the linear growth of (v,' )2

asserted in (2.17c) reflects the conjectured behavior g = -s)2s

4. Numerical Results and Interpretation

In this section we use our numerical results to test the conjectures described
above. The interpretation of the results is complicated by the presence of two
sources of error: the discretization error in using the forward Euler scheme on a
finite grid, and the asymptotic error, which arises since the conjectures refer only
to the behavior of w( , s) as s -- o.

All the runs reported here use O(x) = I + cos(7Tx) as the initial data. p = 5
for the nonlinearity, and X = . M = 2V2 . = 1.8/212 for the parameters of
the algorithm. These values are typical but arbitrary: other choices of initial data
and algorithm parameters lead to identical conclusions about the asymptotic
character of the blow-up. 1 he values of Ax and At are always chosen so that
At/( Ax) 2 = .25, and each run is continued for eighty rescaling iterations. Since
the algorithm is an unusual one, combining rescaling and grid refinement, we do
a convergence study for Ax = .02, .01, and .005 corresponding. respectively, to
100, 200. and 400 points in the initial grid for u(x.0).

In order to relate our calculations to the conjectures it is necessary to connect
the computed "rescaled solutions" u,(yA, TA ) with the -real" solution u(x. t)
and the "solution in similarity variables" w(C. s). This may at first glance appear
impossible, since u, is related to u, - (and hence ultimatelv to u) by the scaling
(2.15). which takes place at the implicitly defined time Tr*. while w is related to u
by the change of variables (3.1), which involves the unknown blow-up time T. In
fact, however, it is possible: the missing link is Theorem 3.1. which relates
(I - t) to the magnitude of u. asymptotically as t -- T.

The first task is to express uA( .v. T. ) in terms of u(.. I). the solution of (1.1).
If tA is the "real" time at which the rescaling from uA to u,. , takes place, then
(2.15) gives

(4.1) tA r,* + X2T,* + . -. + -. *

where T,* is the scaled time at which u, is rescaled to create u, -. Iteration of
(2.15) also gives a formula for the computed rescaled solution uA just before the
next rescaling:

(4.2) uk( A I TA* ) -A r (p u(pA, . ( ),

where v, is tFe spatial variable of uA. In particular. at time t, the amplitude of u
has increased by a factor of X 21 ,p 1)

(4.3) Iu(' t,u) A, = UK "A ' ',

and so the blow-up time is T = limp t,
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Our qualitative observation (2.17a) is concerned with the number of time
steps taken on the grid for u, before the creation of u4. 1. Let us call this number
NA(100) when the initial grid has 100 points, and so forth. Recall that rA
represents the "scaled time" for uk (see (2.15)), and that u, + is created at
. -r=*. Since we use the same time step A,, = At for every k. N would he

(At) -'r, in the absence of discretization error. To understand the behavior
as k -- oo, we write (1.3) in the form

(4.4) (T- t.)u(O, t.) ' o(l).p - 1 +o()

where o(1) represents a term that tends to 0 as k - oc. When combined with
(4.3) this gives an asymptotic formula for T - t, in terms of k:

(4.5) (T- tAk-) 2k = MIP.- o(1).
p - I

The behavior of ?k* as k - o is determined by (4.1) and (4.5):

X2,1(, tk-1)

= A2'((T tA 1) - (T - k))

MI-P. I (X- 2 
- 1) + o(1).p-I

so that

(4.6) im .rk* = Mt " 1 (A 2 1).k- p -1"

Thus the number of time steps Nk should become asymptotically independent
of k. This is precisely what happens: Figure 2 shows N At as a function of k. for
computations using 100, 200 and 400 grid points initially, and Table I gives the
values of N at selected values of k.

The preceding argument was based on the rigorous result (1.3). More detailed
asymptotics for Tr, can be obtained from the conjectured behavior (3.19b), which
gives a I/s correction to the amplitude of w(0, s) as s -- . To this end, let
sk = - log(T - t)' and note from (4.5) that

(4.7) s, = 21logXlk + [log(p - 1) + (p - 1)log MI + o(l).

From (3.19b) we have

P- 1 2)
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Figure 2. The computed time N. At until the amplitude ofu, reaches threshold M. plotted against
k. when the initial grid has (a) 100 points, (b) 200 points, (c) 400 points. Curve (d) is the predicted
value N " 

-P At from (4.9).

Table I. Number of steps on each grid until the amplitude reaches threshold.

k N, (100) N, (200) V, (400)

20 120.98 478.82 1910.21
30 120.20 475.73 1897.88
40 119.84 474.28 1892.09
50 119.63 473.45 1888.76
60 119.50 472.91 1886.60
70 119.40 472.53 1885.09
80 119.34 472.25 1883.98
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Using (4.7) and the definition of w, (3.1), we obtain

(T - tk)u(Ot)P ' 1 + 4l+ O(k 2).

strengthening (4.4). This leads to

(T- tA)4 - k = M-P 1( + 4igXI k + O(k 2).

in place of (4.5),.whence

Tk* = A - ((T -tk-l) - (T - j

(4.8) = M I-  
-1 - 4 + O(k 2).
. 1 h-  1 1+ 4pj-1og,

We are thus led, by neglecting the error term in (4.8). to an asymptotic
formula for N,:

(4.9) Nk-y-p = (At) - 1  M - p P1 ( - 2 A + 4plog X I

The graph of N'YmP • At is the lowest line in Figure 2, it deviates from the
values computed using the finest mesh by only about .05%. As another test of
(4.9), we note from Table 1 that when 400 initial grid points are used, the number
of time steps per iteration changes by only 2.62 between k = 60 and k = 80. For
our choices of A. p, and M, and with At = .25(Ax) 2 = 6.25 • 10-6, (4.9) gives

N6ymp - N ,
syr p 

. 2.25,

in approximate agreement with the computation.
The observed values of N. can also be used to test the convergence of the

calculations as Ax-- 0. Focusing on k = 80, we see that the error E =

IN80o- N YImp " .Atis
E(400) = 6.73. At4o

o,

E(200) = 2.94 • At 200 = 11.76 • At* ,

E(I00) = 2.01 • Ato o = 32.16 • At,

reflecting the first-order convergence rate in time of the difference scheme.
Our second qualitative observation is concerned with the computed rescaled

solution just prior to the next rescaling, Uky, TA). It is defined for -A <

or < - v> -, an interval that grows with k. To compare the profiles for different
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values of k. it is therefore convenient to rescale each u,(yA, T'* ) so as to make it
be defined on a fixed interval -1 < z < 1. (Beware: this last rescaling affects
space alone, not the values of uk; it has nothing to do with the rescalings that are
done in the course of the algorithm.) Since by symmetry .A I = v , we are led
to consider the "rescaled profile"

(4.10) z -- uA( Av r*) -1 <2Z < 1.

Our observation (2.17b) asserts that this function is asymptotically independent
of k.

In fact, as we shall now explain, the form of this rescaled profile can be
predicted from our cruder Conjecture 3.2 alone. Indeed, suppose that

(4.11) w( ,s) = /g(s)) + o()

with f and g as in (3.4a-c). To relate uk(yk, Tr*) and w, we combine (4.2) and
(3.1):

(4.12) u,(.v,, Tk*) -X2A/P 
1(T - tk ) 1.(p 1)w( 'vi (T, T- A) 1t , 2.s,

with s, = -log(T - tA ), as above. Since w is a uniformly continuous function of
its arguments (see for example [16]). (4.5) and (4.12) yield

(4.13) uk( .- TA*) (p- (1P 'M( p- 1 A "- .p I) m, ,( 1).

Substitution of (4.11) into (4.13) yields the corresponding prediction for (4.10).

uA z - '.1A* 1' 'TA

=P (p l),/(P-l,MfWg MI m ,-2X J , I,/g(sA)) + o1)

The asymptotic behavior is evidently governed by that of the ratio y, 1/g(s ).
This, too can be evaluated by substituting the ansatz (4.11) into the known
relation between Uk and w, (4.13). In fact, ignoring errors of computation for the
moment, we set Ax = 0 in the definition of Y' 1, (2.14), to get

(4.14) Uk I(yk
+ 

1. r*-I) = U , -(. , * ) = aM .

Therefore, from (4.13) and (4.14), we have

am = (p - 1)1/'(P 'Mf(W:-p-I 1 M 1'1k j/g(s, 1)) + 0(1),

so that 1 j/g(sk 1) tends as k -- o to the (positive) root " of

(4.15) a = (p - I)I/(p 1)( p- M 
P

1 "' '2)
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The observed ratio v-, /g(s,) has the same asymptotic value, since bv Taylor's
theorem

g(sk.) 1 < max g()

g(sk-1) ,, , g(sA ,)(sA - sA 1))

using this, the known asymptotics of s,. (4.7), and the growth hypothesis on g.
(3.4c), one easily shows that

lir g(s) 1
A-. g(s~ ,) "

We conclude that if w has the proposed form (4.11). then the rescaled profile of
uk, (4.10), is asymptotically

(4.16) z - (p 1)- I/,PMf(Vp_-I M, (P l1) z).

Notice that the predicted profile (4.16) depends only on f. not on the "spreading
rate" g(s): the effect of g has been washed out by the final rescaling of u,.

Conjecture 3.2 asserts not only that w has the asymptotic behavior f( /g(s))
but also the form of f:

f = ((p - 1) + n2) "(1, P

The root " of (4.15) is easily computed to be

(4.17) - M"l-)/2( l a ' _ 1)'

and substitution into (4.16) yields

(4 .18) Uk(Z -')A 1, "k ) - M [I + (a' " _ 1)X 2:2] I (P

The right side of (4.18) is virtually indistinguishable from the output of our
algorithm after sufficiently many iterations, see Figures 3 and 4. A quantitative
study of the convergence rate is difficult, since in the computation the set where
u > aM is enlarged to include an additional grid point on either side when
rescaling and refinement is done. However, the qualitative behavior can be seen
by evaluating (4.18) at z =_4, and comparing it with the rescaled computed
solution at z 4 after k = 80 iterations, using 100. 200 and 400 points in the
initial spatial grid:

left side of (4.18) using 100 grid points = 1.8081,

left side of (4.18) using 200 grid points = 1.8064,

left side of (4.18) using 400 grid points = 1.8047.

right side of (4.18) = 1.8.
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uk(zx.-ly k-X

2.00

1 .00 ..
-1.0 -0.5 0.0 0.5 1.0

z
Figure 3. The computed profile of u, rescaled as in (4.10) at A = 80. and the predicted profile
(4.18). They coincide to within plotting resolution.

Recall also that the right-hand side of (4.18) does not include a Ilk correction
term, but is the asymptotic limit as k - .

Our third qualitative observation is that (.vA )2 grows linearly with k. This is
linked to the "spreading rate" g in (4.11). since the discussion leading to (4.16)
shows that

(4.19) Yk+ = g(sA)( + o(1)),

where " is the root of (4.15). Conjecture 3.3 asserts that

g(Sk) = CoSk". C = 02 4p

(p- 1)2

combined with the asymptotics of sA, (4.7), and the value of . (4.17), this yields

(4.20) (yk+) 2 = k - 81 Ilog AIM' "(a' P - I) + o(k).
(pi U1)2
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Figure 4. The computed profiles of uA for selected %alues of A. each rescaled as in (4 IO) As A

increases they converge to the profile Nho%%n in Figure 3.

As in the last paragraph. we expect the right side of (4.20) to he an expansion in
powers of k. In particular. if (3.19a) is used in place of (4.11) in the derivation of
(4.19). then o(1) becomes 0(1/k) and (4.20) becomes

(4.21) (v )2  - 8P ilog-m' I(a, _ l) + 0(1).A(p-I):

Thus, Conjecture 3.3 predicts not only that (.V' )2 is asymptotically linear. but
also the value of the slope.

For making a quantitative comparison between our numerical results and the

conjectured behavior, there is a slight advantage to replacing y,' in the abo~e
arguments by the point y6 defined by

(4.22) U( ),,* = OM,

with 0 chosen so that a < 0 < 1. The reason is that the numerically computed

Y, does not satisfy (4.14) exactly, since it is required to be a grid point. see (2.14).
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Figure 5. The graph of (veAV against A. for various values of 0, based on data obtained using 4W0
points in the initial grid. The width of the interval rescaled at the A th iteration is 2 v,'. with a as in
(2.2).

However,. y need not be a grid point, so it can be chosen to solve (4.22) exactly
(within the accuracy of the calculation) by using linear interpolation in space.
Replacing a by 0 in the arguments that led to (4.21) we see that (y, ), is
expected to grow as

(4.23) (y) 2 = y k + 0(l), 'y 8log\IMI P(61 " - I.

Thus the points (k,(.vO) 2 ), with 0 held fixed, should approach a line of slope
y. Our values for p. M, and X give y = .027(0 1 - 1). Figure 5 shows ( 1")- as a
function of k for several values of 0, using 400 points in the initial grid. For a
quantitative comparison, we present in Table 2 the slope of the line which
best fits the points (k,(vk) 2) in the least squares sense for 60 < k < 80. and
for several different values of 0. The results agree with the prediction (4.23) to
within 3%.
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Table 11. Slope of line through the points (k, (1,61)2 ), where uA ( 1-T* ) = GM.

computed predicted
0M slope slope

2.0 .08327 .08123
2.25 .04156 .04054
2.5 .01772 .01729
2.75 .00330 .00322

5. Conclusions

We have demonstrated the convergence of the rescaling algorithm, and used it
to calculate the solution of u, - u, = u 5 until its magnitude reaches about 1012.

The computed singularity is consistent with the conjectured form (1.4). derived
by means of a formal expansion.

This method appears to be suitable for computing singularities that arise in
the solutions of other equations with a similar scale invariance. Although we
obtain satisfactory results using the forward Euler scheme, which is just first-order
accurate in time, it may be better for some applications to use a more accurate
discretization of the partial differential equation. A natural candidate for fur-
ther investigation is the nonlinear Schrdinger equation iu, - Au - Jul" lu = 0
on a ball in R" with radial initial data and a Dirichlet boundary condition, in the
critical p = (n + 4)/n or supercritical p > (n + 4)/n cases. Though extensive
calculations have already been done (see 124]. 125]. [27]), we think that our
algorithm may achieve a greater resolution of the local behavior of the singularity
than those done to date.
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